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The cost of a density-functional calculation with three-dimensional integration
remains to be orderN3, although a large portion of the integration grid may have
negligible effects on the generation of a matrix element, due to rapid decay of atom-
centered basis functions with distance. This type of integration sparsity is exploited
by prescreening for insignificant contributions based on a direct estimate of their mag-
nitudes. The result is a substantial reduction in cost without sacrificing numerical pre-
cision. Timing on compact molecules shows that a near orderN2 scaling with system
size can be obtained forN * 300 basis functions. The overhead of prescreening is
moderate and may be characterized by a break-even sizeN≈ 200. c© 2000 Academic Press
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1. INTRODUCTION

The solutions of a polyatom in the local density approximations (LDA) of the density-
functional theory [1] can be obtained by numerically integrating the one-particle equations
over a three-dimensional grid [2–7]. The difficulties caused by nuclear cusps are overcome
by properly partitioning the space around each nucleus, e.g., using primitive wedges to fill
the atomic spheres and interstitial regions [8–11], or sampling the space multiple times with
a set of overlapping spheres and a weight-partitioning function [5, 12]. As the components
of the equations are discretized on the grid [2], identical arithmetic operations will result
at each grid point, which can be performed with algorithms of extreme simplicity. For
example, a vectorized algorithm [13] performing quadratures to build a matrix element
may contain just a few dozens of lines of code and will be rather straightforward to upgrade
to parallel platforms [14, 15] as the discretization has provided a natural data partition
for distributions. In addition to the arithmetic simplicity, performing three-dimensional
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integrations removes the restrictions on the form of atomic orbital basis functions making
it possible to employ orbital types which are more saturated but infeasible for analytical
treatments. Examples of such orbital types include the Slater type orbitals [3, 16, 17] and
numerical atomic orbitals [4, 5, 18, 19] (as exact LDA solutions of atoms and ions). In
these orbital forms, certain physical properties of an atomic wave function, such as the
nuclear cusps, an exponentially decaying tail, and nodal positions resembling atomic shell
structure, would be preserved. Due to the lack of proper analytical expression or efficient
algorithms for analytical integration, however, these function forms have to be expressed
and processed numerically with three-dimensional integration.

Although solving a polyatomic problem by performing numerical integration has sig-
nificant advantages, the cost to solution remains orderN3 in scaling with problem size,
compared to a performance betweenN2 and N3 of methods [20–23] based on analytical
integration with prescreening. The purpose of this work is to show that the performance of
the three-dimensional integration for the same polyatomic problems can be brought in line
with the best analytical methods as is measured by the scaling power in cost growth with
problem size. Recently, several algorithms have been developed with asymptotically order
N performance [24–29]. However, the range of their applications is rather limited. Among
the main restrictions are large system size, low system dimensionality, and spatially tight
basis functions [30]. For problems outside this domain, performance can decrease drasti-
cally, particularly when accuracy is in demand. The constraints on the present search for
replacement algorithm are that it should maintain a low error bound while providing sub-
stantial speedup over the existing high performance orderN3 algorithms [13] for practical
use.

There are two bottlenecks in the three-dimensional integration solutions for polyatomic
problems within the LDA framework. One is the assembly of matrix elements for trans-
forming from a grid representation to an atomic orbital representation, and the other is
the mapping of electron density onto a real space grid from the orbital space through a
matrix-to-scalar reduction at every grid point. The two procedures both involve adding up
numerous tiny values whose magnitudes are largely determined by distance to the centers
contributing atomic orbital basis functions. Due to the fast decay of the tail of these func-
tions, the integration is sparse. Exploiting this sparsity can lead to a substantial reduction
in cost for the problems to be solved.

In this paper, a simple algorithm to perform the required prescreening is presented. The
algorithm scales as orderN2 over a wide size range starting from about 300 basis functions
and breaks even with a fast reference orderN3 algorithm at 200 basis functions showing a
rather moderate overhead. The errors caused by truncating small values are comparable or
below the intrinsic noise of the numerical grid.

2. RATE-LIMITING PROCEDURES

Using an atomic orbital basis for the expansion of one-electron wave functions

ψi (r) =
∑
µ

ciµχµ(r), (1)

the Kohn–Sham one-electron equations [1]

Hψi (r) = εiψi (r) (2)
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can be rewritten in terms of a set of linear equations∑
i

ci ν [Hµν − εi Sµν ] = 0, (3)

whereεi are the one-electron energies,Sthe overlap matrix, andH the Hamiltonian matrix,

Sµν =
∫

d3rχµ(r)χν(r), (4)

Hµν =
∫

d3rχµ(r)H(r)χν(r). (5)

H may be further divided according to dependence on electron densityρ

H = T + V [ρ], (6)

whereT is the kinetic energy andV the effective potential consisting of an electrostatic
part Vs and an exchange-correlation partµxc. For basis functionsχ of a general type, all
matrix elements must be evaluated via numerical integrations on a three-dimensional grid
[2],

3µν ≈
∑

k

ωkχµ(r k)3(r k)χν(r k), (7)

where the quadrature weightsω, basis functionsχ , and operator3 (which equalsT ≡ − 1
2∇2

andV for H , or equals 1 forS) are defined on every grid pointr k [2]. When all the ingredients
are available, the assembly of the matrix3 requires orderNpN2 operations, whereNp is
the number of grid points andN the number of basis functions. The actual costs are quite
different for the matricesT , S, andV within a complete self-consistent calculation. ForS
andT , it needs to be done only once at the beginning of the iterations, whereas forV , the
computations are repeated each iteration with updatedρ. The cost for generating a basis
function at a grid point is nearly a constant, which gives a total cost for allχ on the entire
grid in the order ofNpN. The calculation of the weights requires negligible time.

In general,Np is not a linear function ofN but dependent on complex variables such as
stoichiometry and geometry. However, with the restrictions that the systems are built with
repetitive units, the relation can become linear and the cost of a matrix assembly becomes
∝N3.

The densityρ is constructed by reducing a matrix to a scalar at each grid point and is an
orderN3 procedure,

ρ(r k) = 2
∑

i

|ψi (r k)|2 = 2
∑

i

∣∣∣∣∣∑
µ

ciµχµ(r k)

∣∣∣∣∣
2

. (8)

This expression has an operation count of∼2NpNoccN, where Nocc is the number of
occupied one-electron states and is usually several times smaller thanN. However, since it
contains coefficientsc in nonlinear forms, Eq. (8) cannot be used efficiently for prescreening.
The preferred linear dependence ofc can be obtained by rearranging the terms in Eq. (8),

ρ(r k) =
∑
µ,ν

Pµνχµ(r k)χν(r k), (9)
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wherePµν is an element of the density matrix

Pµν = 2
∑

i

ciµci ν . (10)

As expected, this expression has a higher operation count,∼NpN2, increased by a factor
of N/2Nocc from that of Eq. (8).

The electrostatic potentialVs may be obtained by solving Poisson’s equation with a
multipole expansion for the densityρ [5, 31]. The cost for a multipole expansion solution
of Vs is of order N2. The exchange-correlation potentialµxc can be evaluated with an
orderN2 cost using fitted densities on the grid. However, the prefactor depends strongly on
whether∇ρ is to be evaluated. To avoid the high cost of evaluating∇ρ dependent terms
in µxc, a post-SCF treatment is adopted where the gradient corrections are included as a
perturbation to the self-consistent LDA solutions [32–34]. Since the cost of evaluatingV
on the grid can be maintained low, the orderN3 matrix assembly and density construction
will be the dominant procedures in the range of accessible sizes.

3. PRESCREENING ALGORITHMS

On each grid point, the right side of Eq. (7) is a matrixχµω3χν . There are many ways to
determine the sparsity in these “micro” matrix elements. With rank-1 updates, it is possible
to form a sparse matrix by eliminating small elements in the basis function vectorχ , before
it is used to expandψ in Eq. (1) and build the matrix, e.g., by a spherical cutoff of the
tail of the basis functions [26]. Since the cost of the prescreening tests becomes low for
large N, asymptotic linear scaling can be achieved [26, 27] . However, this comes at the
expense of the performance in the intermediate size range. In this size range, the vectorχ

will have much fewer insignificant elements resulting in a drastic decrease in the number of
identifiable small matrix elements. The missing small values are those with a small product
valueχµχν but moderate values for bothχµ andχν . With lesser sparsity to exploit, the
efficiency of these algorithms decreases.

To account for this type of sparsity, the matrix elements must be examined more closely.
Since the workload per element is small, simplifying approximations are needed to reduce
the overhead. For atom-centered local basis functions, it is natural to partition the matrix with
atomic centers. This will allow for several matrix elements to be examined once together
with the spatial variation of the basis functions estimated using an “envelope” function. The
prescreening can be made with the following test

ηa(r k)|ωk3(r k)| ηb(r k) < ε3, (11)

whereηa is defined as the maximum, at a grid pointr k, of all χµ with centers at the same
nucleusa (i.e.,Rµ=Ra),

ηa(r) ≡ η(|r − Ra|) = max
µ∈a
{|χµ(r ;Rµ)|}, (12)

andε3 is the threshold which provides a control of both the truncation error and prescreening
efficiency. When the inequality in Eq. (11) is held, the contributions to the matrix elements
3µν from grid pointr k in the specified block (µ ∈ a, ν ∈ b) are discarded. The algorithm
implementing this matrix sparseness test is shown in Fig. 1.
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FIG. 1. Algorithm implementing the prescreening test Eq. (11) for matrix update. See text.

Hydrogen atoms usually have much fewer basis functions than heavier ones such as
carbon and silicon, and therefore smaller block size in the partitioned matrix. For a typical
medium sized basis with double split valence [35], the block size is only 2 by 2, which is
too small to justify the cost of the test to be made. A remedy is to fuse the hydrogen block
into a neighboring block owned by another atom. This is convenient since a hydrogen atom
is almost always bonded to its nearest neighbor heavier atom. Only rarely a hydrogen atom
is in a non-bonding or bridging position, in which cases the corresponding matrix blocks
should be left unfused.

The envelopeη needs to be recalculated after the fusion. To keep the cost low, the center
of the hydrogen basis functions is temporarily shifted to the center of the heavier atomRa.
As a result, an error will be produced by miscalculating the distance from hydrogen center
to a grid point. However, this error tends to be small due to the compensating effects of one
χ in the productχ(Ra)ω3χ(Rb) being in greater distance to the grid point than the other
χ . Only when the twoχ are centered on the same atom (Rb=Ra) will this error become
large. In this case, a tightened threshold can be used to reduce the errors.

In a similar way, the density construction process, Eq. (9), can be facilitated by exploiting
the sparseness on an integration grid.

ηa(r k)P̄abηb(r k) < εP, (13)

whereη are defined in Eq. (12),̄Pab is the maximum of a block ofPµν with the atomic
centersa andb,

P̄ab = max
µ∈a,ν∈b

{|Pµν |}, (14)

andεP is the threshold. The implementation is similar to that for matrix update, Fig. 1.
However, the magnitudes of the “micro” contributionsχµPµνχν can vary more wildly on a
given grid point due to the presence ofPµν which is index dependent.

4. PERFORMANCE ANALYSIS

Two sets of sample molecules with compact structure, polycyclopentadienes (C5H6)m+1

(m= 1–8) and helicines C4n+2H2n+4 (3≤ n≤ 33), see Fig. 2, are used for the demonstration
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FIG. 2. Schematic view of sample molecules: (a) tetra-polycyclopentadiene and (b) [9]helicine. Large circles,
carbon atoms; small circles, hydrogen atoms.

of the performance of the new prescreening algorithms. Chainlike molecules which tend to
have low scaling power behavior are avoided. A double valence plus single polarization (on
non-hydrogen atoms) basis is used which allocates 14 numerical atomic orbital functions
(threes, six p, and fived-types) for a carbon atom and twos-type orbitals for a hydrogen
atom. The integration grid is generated as spheres around each atom with the grid size
approximately proportional to the basis set size, namely,Np≈ 540N for polycyclopenta-
dienes and 430N for helicines. No symmetry is used for the helicines. The timing is made
on MIPS R10000 processors with a 250 MHz clock speed. For large molecules, multiple
processors are used with properly assigned parallel speedup coefficients for converting to
uniprocessor time.

4.1. Speedups

Figure 3 shows the speedup of prescreening at different level of sparsity. The original order
N3 algorithms, which are optimized for matrix operations [13, 36], are used as reference.
The degree of sparsity, measured as the fraction of the total “micro” contributions being
discarded, increases with iteration as a result of updating upon results from the previous
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FIG. 3. Time ratio over the reference algorithms with increasing discard rate. Circles, matrix assembly;
triangles, density construction. Small symbols (circles and triangles), [9]helicine; large symbols, [24]helicine.

iterations (differential update) [20]. Some performance characters can be seen here. First,
the speed gain is rather small in the first iterations due to overhead. Even worse is the high
point (70% discard rate) for the density construction to break even. This is partly due to the
use of a higher operation count expression (by a factor ofN/2Nocc= 2.3 here) and partly
due to the overhead that can be attributed to the prescreening tests. The intersect of the
T/Tref curves at the zero discard rate gives a measure of the total overhead. This overhead is
characteristic of the prescreening in three-dimensional integration. For four-center Gaussian
integrals in conventional analytical integration, the sparsity comes from contributions of
four different centers [20], compared to just two here in the three-dimensional integration.

Figure 4 shows the scaling laws of the prescreening algorithm for the helicines. For better
illustrations, a properly normalized timeT/N2 is used. For comparison, the time for the

FIG. 4. Normalized time (T/N2) vs N for helicines. Circles are for matrix assembly and triangles for density
construction. Filled symbols (circles and triangles) are for precreening algorithm and open symbols for reference
algorithm. Data are averaged over 10 iterations (using improved initial guess for density input, see text).
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reference orderN3 algorithm is also included. A nearN2 scaling for the new algorithm
is clearly seen. The scaling behavior of the polycyclopentadienes is essentially the same,
except that these molecules span a smaller size range (N≈ 200–800) and the corresponding
curve has a slightly negative slope. This difference is not surprising. The helicines are
electronically more delocalized due to the six-membered carbon rings and their density
matrix elements are expected to converge more slowly. Examinations of the distribution of
Pµν with separation|Rµ−Rν | for the helicines revealed that there is a significant population
of nonzero elements separated by a few bond lengths upon convergence.

The asymptotic scaling for the density construction shown in Fig. 4 is achieved with the
help of another prescreening upon the existing one. The added test is upon a block of grid
points [27] for a cluster of atoms. This is possible since thePµν in the productχµPµνχµ
goes off quickly with interatomic distance after exceeding a critical length [25, 37]. For the
helicines, the fraction of the total discard accounted for by this “macro” test increases readily
from below 1/10 for [15]helicine (N= 1116) to 1/4 for [33]helicine (N= 2016). For matrix
assembly, no significant improvements are observed, probably due to the sensitivity of the
potentialV on spatial locations. Rearranging grid points is too costly for the current self-
consistent procedure which solves Poisson’s equation with multipole component expansion
on spherical grids built around each nucleus [5].

4.2. Thresholds and Errors

The thresholdsε in the prescreening tests Eqs. (11) and (13) need to be adjusted for use
with differential update,

εX = min
{

dX〈1ρ〉γX , ε̄X
}
. (15)

Here,X=3 or P while d, γ , andε̄ are constant parameters.〈1ρ〉 is the root-mean-square
difference of densities between two successive iterations, which decreases with iteration. ¯ε

is used as a safeguard for〈1ρ〉which in occasions can be too large to use. The values listed
in Table I are chosen empirically; with these threshold values, the errors in the calculated
total energy can be kept below 10−5 a.u. for all the sample molecules used in this section.

Figure 5 shows the distributions ofχµωVχν andχµPµνχν with respect to their magnitude.
The center of the distribution shifts towards the left side for smaller magnitudes as the
convergence increases. However, in the early stages of an iteration procedure, convergence
can be poor and a significant proportion of the distribution would remain in relatively large

TABLE I

Parameters Used in Eq. (15) to Determine the Prescreening

Thresholdsε in Eqs. (11) and (13)

Xa d γ ε̄b

T 2× 10−11 0 2× 10−11

S 1× 10−10 0 1× 10−10

V 4× 10−9 0.5 4× 10−11

P 2× 10−6 0.75 2× 10−8

a For one-center contributions, i.e.,Rb=Ra, theε is multiplied by 1/50,
see text in Section 3.

b For the first build ofVµν andρ, the threshold is reduced toε= 0.001ε̄.
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FIG. 5. Distributions of “micro” contributionsM with iterations for [12]helicine. (a)M =χµωVχν and
(b) M =χµPµνχν . The solid, long dashed, and short dashed lines represent the first, middle, and last iteration,
respectively.

magnitude, particularly for contributions to the density, as it is shown here in Fig. 5. To
improve the overall performance of the prescreening algorithm, it is crucial to supply the
iteration procedure with a sufficiently converged density matrix. Such an input density can
be obtained by iterating over on a coarser integration grid. Figure 6 shows its effects on the
convergence of the total energy and density for a [12]helicine molecule.

FIG. 6. The effects of the improved initial density matrix on the convergence of (a) density and (b) total
energy, for a [12]helicine molecule.δE is the deviation of total energy at the current iteration from the converged
value (data obtained without prescreening).



EXPLORING SPARSITY IN 3-D INTEGRATION 413

FIG. 7. Truncation errors in total energy. (a) Prescreening turned on for matrix assembly (long dashed), for
density construction (short dashed), and for both (solid line). (b) Errors in total energy at different tolerance levels:
using thresholds as given in Table I (solid line), scaled by 50 (long dashed), and scaled by 0.1 (short dashed). The
crosses represent the errors per atom. The alternations in the errors actually observed are removed by connecting
data points piecewise with a strictly uphill manner for increasingN. The resulting curve represents an upper bound
of the errors.

Figure 7 shows the errors in total energy caused by prescreening. In the upper penal, partial
errors arising from truncating in matrix update and in density construction separately are
shown. They are in comparable magnitude. In the lower penal, the error in total energy
δE is plotted as a function ofN for thresholds being set at three different levels, with
one using the values given in Table I and the other two scaled by 0.1 and 50. The errors
are well bound. For the default thresholds,δE increases by approximately an order of
magnitude fromN≈ 200 to 2000, with its maximum less than 0.05× 10−6 a.u. per atom.
In comparison, the error intrinsic to the quadrature rules is much larger in maginitude, in
the range between 0.1–10× 10−6 a.u. per atom, depending on the details of the grid used
[8–12].

Errors can occur from the miscalculation of distances for the fused matrix blocks corre-
sponding to a group consisting of a carbon atom and hydrogens attached to it (Section 3).
This error can be estimated by simply restoring to one block (and oneη) for each atom.
Surprisingly, the results show no significant differences between the two ways of defining
η in Eq. (12). This suggests that the mislocation error could be made sufficiently small to
be of comparable magnitude of the “normal” truncation errors.

4.3. Overall

Figure 8 shows the time for a complete self-consistent calculation with prescreening
threshold set at the above three levels for the helicines. TheT/N2 curves show an overall
performance of orderN2 starting fromN≈ 500–600. With the more “insulator” like and
more openly structured polycyclopentadienes, the oneset ofN2 performance reduces to
N≈ 300.
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FIG. 8. Comparison of performance at different thresholding levels, using thresholds in Table I scaled by 1
(solid), 50 (long dashed), and 0.1 (short dashed). To the left, time of a complete self-consistent calculation for
helicines (lines with symbols). To the right, time divided byN2.

The cost of a complete self-consistent calculation with prescreening breaks even with the
reference at a sizeN≈ 200. At such a small size, the matrix operations on the integration
grid are no longer rate determinant and the difference in performance begins to vanish.

5. CONCLUSION REMARKS

A simple prescreening algorithm is presented with an effect to significantly reduce the cost
of the density functional calculations with three-dimensional integrations. By a direct esti-
mate of the spatial variation of the atomic orbital basis functions, a tight control on the trunca-
tion errors can be obtained while maintaining an orderN2 scaling over a wide size range. In
the following, the limitations and some potential applications of the algorithm are discussed.

Molecular symmetry has been used to accelerate integrations on three-dimensional grid
[3, 11, 14, 19, 37]. With a point group symmetry of orderg, both the number of non-vanishing
matrix elements and the grid size can be reduced by a factor of∼g, and the computational
cost will be reduced by the same proportion. However, adapting atom-centered basis func-
tions to molecular symmetry will destroy the spatial locality of these basis functions, making
them unbound to any atomic center. The prescreening schemes presented in Section 3 will
fail. The present algorithms are incompatible with the use of symmetry adapted atomic
orbital basis.

For polyatomic systems with low-lying electronic states competing for the ground state,
such as in a transition metal cluster, small perturbations arising from cutoff errors in the
early stages of an iteration procedure may change the course of convergence at later stages
completely. The use of differential update for density matrix increases the chance for insta-
bility. The reduced magnitude of1Pµν as a result of differentiation encourages aggressive
cutoffs where it should not, which causes divergence. This problem is expected to occur in
methods performing density matrix weighed prescreening upon differentially updated quan-
tities. The present algorithms are not suited for systems where one-electron occupancies
near the Fermi level must be altered to achieve convergence [3, 38].
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In the three-dimensional integration approaches based on divide and conquer, low power
scaling performance is usually achieved with reducing the size of the partitioned subsystems
at the expense of accuracy [28, 40, 38]. The cost for solving the subsystems, which is in
the intermediate size range, is still dominated by the orderN3 integrations. Increasing the
subsystem size, hence the accuracy, will be limited by this cost. Exploiting the sparsity in
the subsystems can improve the overall scaling and allow larger “buffer” regions to be used
for better error control.

The electrostatic potentialsVs can be obtained either through a projection [5] or a fitting
[3, 41]. Either way, an atom-centered basis is required. When a fitting is used and it minimizes
errors in the fitted density [3], a system of linear equations will be produced with the matrix
elements in a form similar to that in Eq. (7). Since the fitting requires a large basis, the
cost for generating this matrix can lead other orderN3 integration procedures. On the other
hand, since the density is more localized than a molecular orbital basis function, greater
sparsity can be expected for the integration.
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