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The cost of a density-functional calculation with three-dimensional integration
remains to be ordeN3, although a large portion of the integration grid may have
negligible effects on the generation of a matrix element, due to rapid decay of atom-
centered basis functions with distance. This type of integration sparsity is exploited
by prescreening for insignificant contributions based on a direct estimate of their mag-
nitudes. The resultis a substantial reduction in cost without sacrificing numerical pre-
cision. Timing on compact molecules shows that a near d¥descaling with system
size can be obtained fod = 300 basis functions. The overhead of prescreening is
moderate and may be characterized by a break-evehsiz00. (© 2000 Academic Press
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1. INTRODUCTION

The solutions of a polyatom in the local density approximations (LDA) of the densi
functional theory [1] can be obtained by numerically integrating the one-particle equati
over a three-dimensional grid [2—7]. The difficulties caused by nuclear cusps are overc
by properly partitioning the space around each nucleus, e.g., using primitive wedges t
the atomic spheres and interstitial regions [8—11], or sampling the space multiple times
a set of overlapping spheres and a weight-partitioning function [5, 12]. As the compon
of the equations are discretized on the grid [2], identical arithmetic operations will re:
at each grid point, which can be performed with algorithms of extreme simplicity. F
example, a vectorized algorithm [13] performing quadratures to build a matrix elem
may contain just a few dozens of lines of code and will be rather straightforward to upgr
to parallel platforms [14, 15] as the discretization has provided a natural data parti
for distributions. In addition to the arithmetic simplicity, performing three-dimension
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integrations removes the restrictions on the form of atomic orbital basis functions mal
it possible to employ orbital types which are more saturated but infeasible for analyt
treatments. Examples of such orbital types include the Slater type orbitals [3, 16, 17]
numerical atomic orbitals [4, 5, 18, 19] (as exact LDA solutions of atoms and ions).
these orbital forms, certain physical properties of an atomic wave function, such as
nuclear cusps, an exponentially decaying tail, and nodal positions resembling atomic
structure, would be preserved. Due to the lack of proper analytical expression or effic
algorithms for analytical integration, however, these function forms have to be expre:
and processed numerically with three-dimensional integration.

Although solving a polyatomic problem by performing numerical integration has s
nificant advantages, the cost to solution remains oNfein scaling with problem size,
compared to a performance betwdgf and N2 of methods [20-23] based on analytica
integration with prescreening. The purpose of this work is to show that the performanc
the three-dimensional integration for the same polyatomic problems can be brought in
with the best analytical methods as is measured by the scaling power in cost growth
problem size. Recently, several algorithms have been developed with asymptotically c
N performance [24—29]. However, the range of their applications is rather limited. Amc
the main restrictions are large system size, low system dimensionality, and spatially
basis functions [30]. For problems outside this domain, performance can decrease d
cally, particularly when accuracy is in demand. The constraints on the present searc
replacement algorithm are that it should maintain a low error bound while providing s
stantial speedup over the existing high performance dxfealgorithms [13] for practical
use.

There are two bottlenecks in the three-dimensional integration solutions for polyato
problems within the LDA framework. One is the assembly of matrix elements for tra
forming from a grid representation to an atomic orbital representation, and the othe
the mapping of electron density onto a real space grid from the orbital space throu
matrix-to-scalar reduction at every grid point. The two procedures both involve adding
numerous tiny values whose magnitudes are largely determined by distance to the ce
contributing atomic orbital basis functions. Due to the fast decay of the tail of these fu
tions, the integration is sparse. Exploiting this sparsity can lead to a substantial redu
in cost for the problems to be solved.

In this paper, a simple algorithm to perform the required prescreening is presented.
algorithm scales as ord®&? over a wide size range starting from about 300 basis functio
and breaks even with a fast reference omdéralgorithm at 200 basis functions showing &
rather moderate overhead. The errors caused by truncating small values are compare
below the intrinsic noise of the numerical grid.

2. RATE-LIMITING PROCEDURES

Using an atomic orbital basis for the expansion of one-electron wave functions

Vi) = Cuxu(), (1)
"

the Kohn—Sham one-electron equations [1]

Hyi(r) = €vi(r) 2
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can be rewritten in terms of a set of linear equations
Z Civ[H;w — €j Su)] = 07 (3)
i
whereg; are the one-electron energi€the overlap matrix, an#l the Hamiltonian matrix,
S/.v = /dsr Xn (r)Xu (r)» (4)

Ho = [ 0, OHORO. (5)
H may be further divided according to dependence on electron density
H =T+ V[pl, (6)

whereT is the kinetic energy an¥ the effective potential consisting of an electrostatit
partVs and an exchange-correlation pask. For basis functiong of a general type, all
matrix elements must be evaluated via numerical integrations on a three-dimensional

2],

Ay 2 Y o (MO AT X (1), ™
k

where the quadrature weiglsbasis functiong, and operatoA (whichequald = —%Vz
andV for H, orequals 1 fo6) are defined on every grid point[2]. When all the ingredients
are available, the assembly of the matiixequires ordeNpN2 operations, wherél, is
the number of grid points and the number of basis functions. The actual costs are qui
different for the matrice3, S, andV within a complete self-consistent calculation. For
andT, it needs to be done only once at the beginning of the iterations, whereds tloe
computations are repeated each iteration with updatékhe cost for generating a basis
function at a grid point is nearly a constant, which gives a total cost for at the entire
grid in the order oN,N. The calculation of the weights requires negligible time.

In general N, is not a linear function oN but dependent on complex variables such &
stoichiometry and geometry. However, with the restrictions that the systems are built
repetitive units, the relation can become linear and the cost of a matrix assembly bect
N8,

The densityp is constructed by reducing a matrix to a scalar at each grid point and is
orderN? procedure,

P =2 Wil =2>" 1 Cuxu)
i i I

This expression has an operation count~#NpNyccN, where Ny is the number of
occupied one-electron states and is usually several times smallex thdowever, since it
contains coefficientsin nonlinear forms, Eq. (8) cannot be used efficiently for prescreenir
The preferred linear dependencecafan be obtained by rearranging the terms in Eq. (8)

2

®)

p(rk) = Z P/LUX/I.(rk)XU(rk)ﬂ (9)
v
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whereP,, is an element of the density matrix
Puv =2 CiuCiv- (10)
i

As expected, this expression has a higher operation ceuxigN?, increased by a factor
of N/2Nycc from that of Eq. (8).

The electrostatic potential; may be obtained by solving Poisson’s equation with
multipole expansion for the densipy[5, 31]. The cost for a multipole expansion solutior
of Vs is of order N2. The exchange-correlation potentja}. can be evaluated with an
orderN? cost using fitted densities on the grid. However, the prefactor depends strong|
whetherVp is to be evaluated. To avoid the high cost of evalua¥gdependent terms
in uxe, @ post-SCF treatment is adopted where the gradient corrections are included
perturbation to the self-consistent LDA solutions [32—34]. Since the cost of evaluating
on the grid can be maintained low, the ordé&t matrix assembly and density constructior
will be the dominant procedures in the range of accessible sizes.

3. PRESCREENING ALGORITHMS

On each grid point, the right side of Eq. (7) is a majtjxA x.,. There are many ways to
determine the sparsity in these “micro” matrix elements. With rank-1 updates, it is poss
to form a sparse matrix by eliminating small elements in the basis function vediefore
it is used to expana/ in Eq. (1) and build the matrix, e.g., by a spherical cutoff of th
tail of the basis functions [26]. Since the cost of the prescreening tests becomes lov
large N, asymptotic linear scaling can be achieved [26, 27] . However, this comes at
expense of the performance in the intermediate size range. In this size range, thevec
will have much fewer insignificant elements resulting in a drastic decrease in the numb
identifiable small matrix elements. The missing small values are those with a small pro
value x, x, but moderate values for boty, and x,. With lesser sparsity to exploit, the
efficiency of these algorithms decreases.

To account for this type of sparsity, the matrix elements must be examined more clo
Since the workload per element is small, simplifying approximations are needed to rec
the overhead. For atom-centered local basis functions, itis natural to partition the matrix
atomic centers. This will allow for several matrix elements to be examined once toge
with the spatial variation of the basis functions estimated using an “envelope” function.
prescreening can be made with the following test

Na(r) ok A (M) mp(rk) < €, (11)

wheren, is defined as the maximum, at a grid paipf of all x,, with centers at the same
nucleusa (i.e.,R, =Ra),

na(r) = n(Jr — Ral) = max{|x, (1 RO}, 12)

ande? isthe threshold which provides a control of both the truncation error and prescree!
efficiency. When the inequality in Eq. (11) is held, the contributions to the matrix eleme
A, from grid pointry in the specified blocky € a, v € b) are discarded. The algorithm
implementing this matrix sparseness test is shown in Fig. 1.
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loop over k (grid points):
store intermediate reuslts:
ty  xu(k) * w(k) * AP(k), for all u
loop over a and b > a (atom blocks):
if o (k) * |w(k) * AP (k) | * (k) > €®, then
foru€aand veb, do
Ay — Ay + ty x xu(K)
end do
end if
end loop
end loop

FIG. 1. Algorithm implementing the prescreening test Eq. (11) for matrix update. See text.

Hydrogen atoms usually have much fewer basis functions than heavier ones suc
carbon and silicon, and therefore smaller block size in the partitioned matrix. For a typ
medium sized basis with double split valence [35], the block size is only 2 by 2, whict
too small to justify the cost of the test to be made. A remedy is to fuse the hydrogen bl
into a neighboring block owned by another atom. This is convenient since a hydrogen ¢
is almost always bonded to its nearest neighbor heavier atom. Only rarely a hydrogen .
is in a non-bonding or bridging position, in which cases the corresponding matrix blo
should be left unfused.

The envelope needs to be recalculated after the fusion. To keep the cost low, the ce
of the hydrogen basis functions is temporarily shifted to the center of the heavieRatom
As aresult, an error will be produced by miscalculating the distance from hydrogen ce
to a grid point. However, this error tends to be small due to the compensating effects of
x in the producty (Ry)wA x (Rp) being in greater distance to the grid point than the othe
x. Only when the twgy are centered on the same atdRy & R,) will this error become
large. In this case, a tightened threshold can be used to reduce the errors.

In a similar way, the density construction process, Eq. (9), can be facilitated by exploi
the sparseness on an integration grid.

Na(ri) Papp (1) < €”, (13)

wheren are defined in Eq. (12)|?_ab is the maximum of a block oP,, with the atomic
centersa andb,

Pab= max {|P,,l}, (14)
nea,veb

andeP is the threshold. The implementation is similar to that for matrix update, Fig.
However, the magnitudes of the “micro” contributiogsP,., x.,, can vary more wildly on a
given grid point due to the presencemf, which is index dependent.

4. PERFORMANCE ANALYSIS

Two sets of sample molecules with compact structure, polycyclopentadiegtés) (1
(m = 1-8) and helicines £ 2H2n14 (3 < N < 33), see Fig. 2, are used for the demonstratio
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FIG.2. Schematic view of sample molecules: (a) tetra-polycyclopentadiene and (b) [9]helicine. Large circ
carbon atoms; small circles, hydrogen atoms.

of the performance of the new prescreening algorithms. Chainlike molecules which ter
have low scaling power behavior are avoided. A double valence plus single polarizatior
non-hydrogen atoms) basis is used which allocates 14 numerical atomic orbital funct
(threes, six p, and fived-types) for a carbon atom and tveetype orbitals for a hydrogen
atom. The integration grid is generated as spheres around each atom with the gric
approximately proportional to the basis set size, nanély; 540N for polycyclopenta-
dienes and 43 for helicines. No symmetry is used for the helicines. The timing is ma
on MIPS R10000 processors with a 250 MHz clock speed. For large molecules, muls
processors are used with properly assigned parallel speedup coefficients for convert
uniprocessor time.

4.1. Speedups

Figure 3 shows the speedup of prescreening at different level of sparsity. The original c
N3 algorithms, which are optimized for matrix operations [13, 36], are used as referel
The degree of sparsity, measured as the fraction of the total “micro” contributions be
discarded, increases with iteration as a result of updating upon results from the pre\
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FIG. 3. Time ratio over the reference algorithms with increasing discard rate. Circles, matrix assem
triangles, density construction. Small symbols (circles and triangles), [9]helicine; large symbols, [24]helicine

iterations (differential update) [20]. Some performance characters can be seen here.
the speed gain is rather small in the first iterations due to overhead. Even worse is the
point (70% discard rate) for the density construction to break even. This is partly due tc
use of a higher operation count expression (by a factdt (£N,.c= 2.3 here) and partly
due to the overhead that can be attributed to the prescreening tests. The intersect
T/ Tref Ccurves at the zero discard rate gives a measure of the total overhead. This overh
characteristic of the prescreening in three-dimensional integration. For four-center Gau:
integrals in conventional analytical integration, the sparsity comes from contribution:s
four different centers [20], compared to just two here in the three-dimensional integrat
Figure 4 shows the scaling laws of the prescreening algorithm for the helicines. For b
illustrations, a properly normalized tinie/N? is used. For comparison, the time for the
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FIG. 4. Normalized timeT/N?)vs N for helicines. Circles are for matrix assembly and triangles for densit
construction. Filled symbols (circles and triangles) are for precreening algorithm and open symbols for refel
algorithm. Data are averaged over 10 iterations (using improved initial guess for density input, see text).
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reference ordeN?® algorithm is also included. A nea¥? scaling for the new algorithm
is clearly seen. The scaling behavior of the polycyclopentadienes is essentially the s
except that these molecules span a smaller size réhge00-800) and the corresponding
curve has a slightly negative slope. This difference is not surprising. The helicines
electronically more delocalized due to the six-membered carbon rings and their del
matrix elements are expected to converge more slowly. Examinations of the distributic
P.» with separationiR,,—R, | for the helicines revealed that there is a significant populatic
of nonzero elements separated by a few bond lengths upon convergence.

The asymptotic scaling for the density construction shown in Fig. 4 is achieved with
help of another prescreening upon the existing one. The added test is upon a block o
points [27] for a cluster of atoms. This is possible sinceBhgin the producty,, P, x,
goes off quickly with interatomic distance after exceeding a critical length [25, 37]. For
helicines, the fraction of the total discard accounted for by this “macro” testincreases re:
from below /10 for [15]helicine N = 1116) to %/4 for [33]helicine (N = 2016). For matrix
assembly, no significant improvements are observed, probably due to the sensitivity ¢
potentialV on spatial locations. Rearranging grid points is too costly for the current se
consistent procedure which solves Poisson’s equation with multipole component expat
on spherical grids built around each nucleus [5].

4.2. Thresholds and Errors

The thresholds in the prescreening tests Egs. (11) and (13) need to be adjusted for
with differential update,

e* = min{dx(Ap)"*, €*}. (15)

Here,X = A or P whiled, y, ande are constant parametetép) is the root-mean-square
difference of densities between two successive iterations, which decreases with iterati
is used as a safeguard f@xp) which in occasions can be too large to use. The values list
in Table | are chosen empirically; with these threshold values, the errors in the calcul
total energy can be kept below 10a.u. for all the sample molecules used in this section

Figure 5 shows the distributions gf wV x, andy,, P, x, with respectto their magnitude.
The center of the distribution shifts towards the left side for smaller magnitudes as
convergence increases. However, in the early stages of an iteration procedure, conver
can be poor and a significant proportion of the distribution would remain in relatively la

TABLE |
Parameters Used in Eq. (15) to Determine the Prescreening
Thresholdse in Egs. (11) and (13)

X2 d y &P

T 2x 1071 0 2x 107
S 1x10% 0 1x 101
\Y% 4% 10° 0.5 4x10°%
P 2x 108 0.75 2x 108

@ For one-center contributions, i.®, = R,, thee is multiplied by /50,
see text in Section 3.
P For the first build oV, andp, the threshold is reduced ¢o= 0.001¢.
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FIG. 5. Distributions of “micro” contributionsM with iterations for [12]helicine. (aM = x,oV x, and
(b) M = x,, P, x,. The solid, long dashed, and short dashed lines represent the first, middle, and last itere
respectively.

magnitude, particularly for contributions to the density, as it is shown here in Fig. 5.
improve the overall performance of the prescreening algorithm, it is crucial to supply
iteration procedure with a sufficiently converged density matrix. Such an input density
be obtained by iterating over on a coarser integration grid. Figure 6 shows its effects ol
convergence of the total energy and density for a [12]helicine molecule.

10" |
107 |
10° |
107 |
107 |
10° |
107 ¢
107 |
10°
10° |
107 ¢
10°®

(6p) (au.)

6E (a.u.)

T/Tmax

FIG. 6. The effects of the improved initial density matrix on the convergence of (a) density and (b) tc
energy, for a [12]helicine molecul&E is the deviation of total energy at the current iteration from the converge
value (data obtained without prescreening).
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FIG. 7. Truncation errors in total energy. (a) Prescreening turned on for matrix assembly (long dashed
density construction (short dashed), and for both (solid line). (b) Errors in total energy at different tolerance le
using thresholds as given in Table | (solid line), scaled by 50 (long dashed), and scaled by 0.1 (short dashec
crosses represent the errors per atom. The alternations in the errors actually observed are removed by con
data points piecewise with a strictly uphill manner for increasing he resulting curve represents an upper boun
of the errors.

Figure 7 shows the errors in total energy caused by prescreening. Inthe upper penal,
errors arising from truncating in matrix update and in density construction separately
shown. They are in comparable magnitude. In the lower penal, the error in total ent
SE is plotted as a function oN for thresholds being set at three different levels, wit
one using the values given in Table | and the other two scaled by 0.1 and 50. The e
are well bound. For the default threshold€ increases by approximately an order o
magnitude fromN A 200 to 2000, with its maximum less than 0.030%a.u. per atom.
In comparison, the error intrinsic to the quadrature rules is much larger in maginitude
the range between 0.1-%010-° a.u. per atom, depending on the details of the grid us
[8-12].

Errors can occur from the miscalculation of distances for the fused matrix blocks co
sponding to a group consisting of a carbon atom and hydrogens attached to it (Sectic
This error can be estimated by simply restoring to one block (andhpf@r each atom.
Surprisingly, the results show no significant differences between the two ways of defil
n in Eq. (12). This suggests that the mislocation error could be made sufficiently sma
be of comparable magnitude of the “normal” truncation errors.

4.3, Overall

Figure 8 shows the time for a complete self-consistent calculation with prescreel
threshold set at the above three levels for the helicines TJIN? curves show an overall
performance of ordeN? starting fromN ~ 500-600. With the more “insulator” like and
more openly structured polycyclopentadienes, the onesdl’>gferformance reduces to
N ~ 300.



414 L.LOU

_l T l T T T T | T T T T | T T T T I I—
25 - 125
N ;]
20 F 4 Jeo
r s R 15
r ] =]
C ] ]
= 15 | —415 ©
& C ] EZ/
= - 1 .
10 —410 =
C ] &
N ] =)
5F 45
L g E T T T T T i
0 - |/| N B BN R B 0
5 10 15 20
N (x100)

FIG. 8. Comparison of performance at different thresholding levels, using thresholds in Table | scaled |
(solid), 50 (long dashed), and 0.1 (short dashed). To the left, time of a complete self-consistent calculatio
helicines (lines with symbols). To the right, time divided Ky.

The cost of a complete self-consistent calculation with prescreening breaks even witl
reference at a sizB ~ 200. At such a small size, the matrix operations on the integrati
grid are no longer rate determinant and the difference in performance begins to vanisl

5. CONCLUSION REMARKS

A simple prescreening algorithm is presented with an effect to significantly reduce the
of the density functional calculations with three-dimensional integrations. By a direct €
mate of the spatial variation of the atomic orbital basis functions, a tight control on the trur
tion errors can be obtained while maintaining an ofdéscaling over a wide size range. In
the following, the limitations and some potential applications of the algorithm are discus:

Molecular symmetry has been used to accelerate integrations on three-dimensiona
[3,11, 14,19, 37]. With a point group symmetry of ordeboth the number of non-vanishing
matrix elements and the grid size can be reduced by a factegpand the computational
cost will be reduced by the same proportion. However, adapting atom-centered basis
tions to molecular symmetry will destroy the spatial locality of these basis functions, mak
them unbound to any atomic center. The prescreening schemes presented in Section
fail. The present algorithms are incompatible with the use of symmetry adapted atc
orbital basis.

For polyatomic systems with low-lying electronic states competing for the ground st
such as in a transition metal cluster, small perturbations arising from cutoff errors in
early stages of an iteration procedure may change the course of convergence at later:
completely. The use of differential update for density matrix increases the chance for ir
bility. The reduced magnitude @fP,, as a result of differentiation encourages aggressi
cutoffs where it should not, which causes divergence. This problem is expected to occ
methods performing density matrix weighed prescreening upon differentially updated q
tities. The present algorithms are not suited for systems where one-electron occupa
near the Fermi level must be altered to achieve convergence [3, 38].
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In the three-dimensional integration approaches based on divide and conquer, low p
scaling performance is usually achieved with reducing the size of the partitioned subsys
at the expense of accuracy [28, 40, 38]. The cost for solving the subsystems, which
the intermediate size range, is still dominated by the oMfeintegrations. Increasing the
subsystem size, hence the accuracy, will be limited by this cost. Exploiting the sparsit
the subsystems can improve the overall scaling and allow larger “buffer” regions to be
for better error control.

The electrostatic potentialg can be obtained either through a projection [5] or a fittin
[3,41]. Either way, an atom-centered basisis required. When afitting is used and it mininr
errors in the fitted density [3], a system of linear equations will be produced with the ma
elements in a form similar to that in Eq. (7). Since the fitting requires a large basis,
cost for generating this matrix can lead other ordéiintegration procedures. On the othel
hand, since the density is more localized than a molecular orbital basis function, gre
sparsity can be expected for the integration.
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